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Abstract

We introduce the continued logarithm representation of real numbers and prove

results on the occurrence and frequency of digits with respect to this representation.
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1 Introduction

The continued fraction representation of real numbers is intensively studied in number

theory, see [4] and references there in. In this paper we consider the continued logarithm

representation of real numbers, which we now introduce. For m ≥ 3 and a sequence

(dk) ∈ {1, . . . ,m− 1}N the continued logarithm to base m is given by

[(dk)]m = lim
k→∞

logm(d1 + logm(d2 + logm(· · ·+ logm(dn) . . . )

The limit exists since the maps

Td(x) = logm(d+ x)

are contractions on [0, 1] for d ∈ {1, . . . ,m−1}. For a finite sequence (dk) ∈ {1, . . . ,m−1}n

we consider the iterated functions

[(dk)]m(x) = Tdn ◦ · · · ◦ Td1(x),

which map [0, 1] to nested subintervals. In this case [(dk)]m denotes the closed interval

[(dk)]m = [ [(dk)]m(0) , [(dk)]m(1) ].

Obviously for an infinite sequence (dk) we have [(dk)]m ∈ [(d1, . . . , dn)]m for all n ∈ N. As

expected we have the following theorem on the continued logarithm representation.

Theorem 1.1 All real numbers in the interval [0, 1] have a continued logarithm represen-

tation to base m and except to a countable set this representation is unique.



Proof. Consider the map f(x) = mx mod 1. For x ∈ [0, 1) let dk = i if fk−1(x) ∈
[logm(i), logm(i+1)) for i ∈ {1, . . . ,m−1}. Since the maps Td(x) are the inverse branches

of f the point x is contained in the interval [d1, . . . , dn] for all sequences (d1, . . . , dn) and

hence [(dk)]m = x. Thus we have constructed a continued logarithm representation for

all x ∈ [0, 1). The representation of 1 is obviously (m − 1). Furthermore the interior

of the intervals [(d1, . . . , dn]m are disjoint for all (dk) ∈ {1, . . . ,m − 1}n. Hence the rep-

resentation of x ∈ [0, 1] is ambiguous if and only if x = [(dk)]m(1) for some sequence

(dk) ∈ {1, . . . ,m− 1}n. But the set of these sequences is countable. �

As far as we know no results on the continued logarithm representation were published.

In the following we will find results on the occurrence of digits, sets with restricted digits

and the frequency of digits with respect to this representation.

2 Occurrence of digits

As in the case of the usual power-series representation of real numbers to base b ≥ 2 the

following result on the occurrence of digits holds in the continued logarithm representation.

Theorem 2.1 In the continued logarithm representation to base m ≥ 3 of almost all real

numbers in [0, 1] all digits i ∈ {1, . . . ,m− 1} occur infinitely many times.

Proof. In the following |I| denotes the Lebesgue measure of I ⊂ [0, 1] and let D =

{1, . . . ,m−1}. Fixm ≥ 3. Since the maps Td(x) : [0, 1]→ [0, 1] are conformal contractions

with Ti(0, 1) ∩ Tj(0, 1) = ∅ for i 6= j, there are contraction constants cd ∈ (0, 1) with∑
d∈D cd = 1 such that

|[d1, . . . , dn]m| ≤ C
n∏
i=1

cdi

where C > 0 is a constant independent of n ∈ N. Let Rl(D̃) be the set of all real numbers

in [0, 1] where the first l digits in the continued logarithm representation come from D

and the other digits come a proper subset D̃ ⊂ D. We have

Rl(D̃) ⊆
⋃

d1,...dl∈D,dl+1,...,dn∈D̃

[(d1, . . . dl, dl+1, . . . , dn)]m

for all n > l. Hence we obtain

|Rl(D̃)| ≤
∑

d1,...,dl∈D,dl+1,...,dn∈D̃

| [(d1, . . . , dl, dl+1, . . . , dn)]m |

≤
∑

d1,...,dl∈D,dl+1,...,dn∈D̃

C · cd1 · · · · · cdl · cdl+1
· · · · · cdn
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= C · (
∑
d∈D

cd)
l · (

∑
d∈D̃

cd)
n−l

for all n > l. Since
∑

d∈D̃ cd < 1 we have |Rl(D̃)| = 0. Now consider the set of all real

numbers in [0, 1] for which not all digits i ∈ {1, . . . ,m − 1} occur infinitely many times.

This is the set ⋃
i∈{1,...,m−1}

⋃
n∈N0

⋃
d1,...,dn∈{1,...,m−1}

{[(dk)]m | dk 6= i ∀k > n}.

The Lebesgue measure of this set is zero since the countable union of sets with Lebesgue

measure zero has Lebesgue measure zero as well. Taking the complement gives the result.

�

Let m ≥ 4 and let D ⊂ {1, . . . ,m − 1} be a subset with more than one Element. We

consider the set [DN]m of all reel numbers in [0, 1] that have a continued logarithm repre-

sentation to base m with digits in D. This set is obviously uncountable and from the proof

of the last theorem we know that it is totally disconnected. It is natural to ask for the

Hausdorff dimension dimH [DN]m of this set. We refer to [2] or [7] for an introduction to

dimension theory. We will estimate the Hausdorff dimension of [DN]m using the following

well know theorem:

Theorem 2.2 Let Ti : Rn → Rn for i = 1, . . . , r be a iterated function system consisting

of conformal contractions fulfilling the open set condition, which means that there is an

open set O ⊆ Rn such that Ti(O) ⊆ O and Ti(O) ∩ Tj(O) = ∅ for i 6= j. If we have

ci < |T ′i (x)| < Ci

on O and d,D > 0 are given by
r∑
i=1

cdi = 1
r∑
i=1

CD
i = 1

the Hausdorff dimension of the unique non-empty compact set K with K = T1(K) ∪
. . . Tr(K) is bounded by

d < dimH K < D,

By theorem 9.9 of [2] we immediately get the upper bound in this theorem and the lower

bound follows from theorem 3.15 of [6], which is in fact more general. We now obtain:

Theorem 2.3 For D ⊂ {1, . . . ,m− 1} we have

Ln ≤ dimH [DN]m ≤ Un

for all n ≥ 1, where Ln and Un are given by∑
d1,...,dn∈D

[(dk)]
′(0)Ln = 1

∑
d1,...,dn∈D

[(dk)]
′(1)Un = 1
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Proof. The set [DN]m is the attractor of the iterated function system

{[(dk)]m(x) | d1, . . . , dn ∈ D}

for all n ≥ 1, see [5] or chapter nine of [2]. Note that the iterated function system is

conformal and fulfils the open set condition since the images of the maps may intersect

only in the boundary, see [6]. Furthermore note that

max{[(dk)]′m(x) | x ∈ [0, 1]} = [(dk)]
′
m(0)

min{[(dk)]′m(x) | x ∈ [0, 1]} = [(dk)]
′
m(1),

which means the the contraction rates of the maps that generate the iterated function

system are bounded from above and below. Our result thus follows from theorem 2.2. �

We use Mathematica to solve the equations in the last proposition for m = 4 and obtain

dimH [{1, 2}N]4 = 0.81± 0.01

dimH [{1, 3}N]4 = 0.66± 0.01

dimH [{2, 3}N]4 = 0.45± 0.01

Compare this with the classical result of Hausdorff [3] that the dimension of the set

of real numbers with one delted digit in the powers series representation to base 3 is

log(2)/ log(3) = 0.630 . . . , no matter which digit is deleted.

3 Frequency of digits

Let fi([(dk)]m) be the frequency of the digit i ∈ {1, . . . ,m− 1} in the continued logarithm

representation [(dk)]m of a real number in [0, 1], that is

fi([(dk)]m) = lim
n→∞

]{k ∈ {1, . . . , n}|dk = i}
n

,

provided that the limit exist. We consider sets with of real numbers with given fre-

quencies of the continued logarithm representation to base m. For a probability vector

(p1, . . . , pm−1) ∈ (0, 1)m−1 let

Fm(p1, . . . , pm−1) = {[(dk)]m ∈ [0, 1] | fi([(dk)]m) = pi, i = 1, . . . ,m− 1}

We first prove an upper bound on the Hausdorff dimenison of theses sets

Proposition 3.1

dimH Fm(p1, . . . , pm−1) ≤
−
∑m−1

i=1 pi log(pi)∑m−1
i=1 pi log(log(m− 1) + log(m)i)
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Proof. We will prove the dimension estimate for Tm−1(Fm(p1, . . . , pm−1)). The result

follows since T−1m−1x = mx − m + 1 is Lipschitz on [logm(m − 1), 1] and hence does not

increase Hausdorff dimension, see corollary 2.4 of [2].

Again we write [(d1, . . . , dn)]m for the interval [[(d1, . . . , dn)]m(0), [(d1, . . . , dn)]m(1)] and

denote the length of an interval I ⊆ R by |I|. For [(dk)]m ∈ Tm−1(Fm(p1, . . . , pm−1)) we

have

|[(d1, . . . , dn)]m| ≤ max{(Td1 ◦ · · · ◦ Tdn)′(x)|x ∈ [logm(m− 1), 1]}

≤
n∏
i=1

1

log(m)
max{ 1

x+ di
|x ∈ [logm(m− 1), 1)} =

n∏
i=1

1

log(m)(logm(m− 1) + di)

= (
n∏
i=1

log(m− 1) + log(m)di))
−1,

hence

lim inf
n→∞

− 1

n
log(|[(d1, . . . , dn)]m|)

≥ lim inf
n→∞

1

n

n∑
i=1

log(log(m− 1) + log(m)di))

=
m−1∑
i=1

pi log(log(m− 1) + log(m)i).

In the last equation we use the frequency of digits in [(dk)]m. Now consider a Borel

probability measure on [0, 1] with

µ([(d1, . . . , dn)]m) =
n∏
i=1

pdi .

We obviously have

lim
n→∞

1

n
log µ([(d1, . . . , dn)]m) = −

m−1∑
i=1

pi log(pi)

and hence

lim sup
n→∞

log µ([(d1, . . . , dn)]m)

log(|[(d1, . . . , dn)]m|)

≤ −
∑m−1

i=1 pi log(pi)∑m−1
i=1 pi log(log(m− 1) + log(m)i)

=: Um(p1, . . . , pm−1)

for all [(dk)]m ∈ Tm−1(Fm(p1, . . . , pm−1)). Note that the intervals [(d1, . . . , dn)]m| consti-

tute a nested sequence of partitions with

cn1 < |[(d1, . . . , dn)]m| < cn2 .

Thus we obtain

lim inf
ε→0

log µ((x− ε, x+ ε))

log(ε)
≤ Um(p1, . . . , pm−1)
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for all x ∈ Tm−1(Fm(p1, . . . , pm−1)). This means that the lower local dimension of the

measure µ is bounded by Um and by theorem 7.2 of [7] we obtain

dimH Tm−1(Nm) ≤ Um(p1, . . . , pm−1)

�

From the last proposition we obtain a theorem which is striking compared with Borel’s

[1] classical result that almost all real numbers are normal with respect to usual powers

series representations.

Theorem 3.1 For all m ≥ 3 the set of real numbers in [0, 1] that have continued logarithm

representation to base m with given frequencies has Hausdorff dimension less than one.

Proof. Let d > 0 be the solution of
m−1∑
i=1

(log(m− 1) + log(m)i)−d = 1

and let (pi) = ((log(m − 1) + log(m)i)−d) be the corresponding probability vector. The

function Um(p1, . . . , pm−1) attains its maximum for this probability vector and the value

of the maximum is d. Now observe that
m−1∑
i=1

(log(m− 1) + log(m)i)−1 < 1

for m ≥ 3 hence d < 1, which completes the proof. �

In the case m = 3 we have

dimH F3(p, 1− p) ≤
−p log(p)− (1− p) log(1− p)

p log(log(2) + log(3)) + (1− p) log(log(2) + 2 log(3))

The graph of the upper bound is displayed below
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We conjecture that dimH F3(p, 1 − p) is in fact an unimodal function, but to find an

explicit expression for this function seems to be quite difficult.
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