
Random walks on infinite self-similar graphs

J. Neunhäuserer
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Abstract

We introduce a class of rooted infinite self-similar graphs containing the well
known Fibonacci graph and graphs associated with Pisot numbers. We consider
directed random walks on these graphs and study their entropy and their limit
measures. We prove that every infinite self-similar graph has a random walk of full
entropy and that the limit measures of this random walks are absolutely continuous.
MSC 2000: Primary 37A35, 05C05 Secondary 37A50, 37A45, 11R06

1 Introduction

The Fibonacci graph was first described by Alexander and Zagier [1]. In this work an
explicit formula for the entropy of the equal weighted Bernoulli measures on this graph
is given. Sidorov and Vershik [14] used a new ergodic theoretic approach to get a similar
result. Moreover Lallys work [10] allows us to calculate the entropy of other Bernoulli
measures on the Fibonacci graph.
The Fibonacci graph is self-similar in the sense that it is isomorphic to all subgraphs
taking an arbitrary knot of the graph as the new root. Inspired by the Fibonacci graph
we develop here the general concept of rooted infinite self-similar graphs. Especially we
will define the growth rate of such graphs and introduce a ζ-function associated with a
graph. Examples of self-similar graphs are the full A-ary and the Pascal graph. More
exciting infinite-self similar graphs are constructed using Pisot numbers, i.e. algebraic
integers with all its conjugates in the unit circle. In this view the Fibonacci graph is given
by the golden mean.
In a recent work Krön [8] introduced a different class of self-similar graphs; these graphs
are not rooted and do not have levels. The concept of self-similarity is quite different
in this setting. For instance in our situation the exponential growth rate of a graph is
defined by the number of knots at a given level, see Definition 2.2 and Proposition 3.1
and 3.2. In Krön’s work the growth dimension is defined using the structure of the cells
of the graph.
Having the general definition of rooted infinite self-similar graphs we describe random
walks on these graphs. Borel probability measures on the space of infinite sequences
induce directed random walks starting at the root of the graph. These random walks are
directed from level to level of the graph. Moreover we are able to define induced limit
measures of such random walks by projecting the measure on the graph equidistant to an
interval. Recently Krön and Teufel [9] studied random walks on self-similar graphs that
are not rooted. Such random do not have a distinguished direction and the analysis is
again quit different.
Given a shift-invariant measure on the sequence space we are able to introduce the entropy



of the random walk on the graph. The self-similarity of the graph is in fact essential to
define this quantity. We prove two upper bounds on the entropy of a random walk on a
self-similar graph. One is given by the usual metric entropy of the inducing measure, the
other one is given by the growth rate of the graph. Beside this the entropy of a random
walk shares some well known properties of metric entropy like affinity and upper-semi-
continuity.
Two main results in classical entropy theory are the local entropy theorem of Shannon
and the variational principle of metric entropy, see [3], [7] or [15]. We prove that the
local entropy theorem remains true in our setting for Bernoulli measures on self-similar
graphs. We have no hope to prove this theorem for arbitrary random walks, since we
rely on the subadditive ergodic theorem. On the other hand the variational principle for
entropy is true for all random walks on self-similar graphs, induced by invariant measures.
We construct an ergodic measure that induces a random walk of full entropy. Here again
the self-similarity of the graph is essential for our construction.
In the end of this work we are concerned with the limit measures of random walks on
self-similar graphs. We will prove that if a limit measure is not absolutely continuous with
respect to the Lebesgue measure then the corresponding random walk on the self similar
graph does not have full entropy. Hence every infinite-self similar graph has a random
walk with absolutely continuous limit measures.

2 Infinite self-similar graphs

In this section we present a general construction of infinite self similar graphs and intro-
duce the exponential growth rate and the ζ-function of such graphs.

Let A be a finite alphabet. Consider the set of all finite words builded from the alphabet,

A(N) :=
∞⋃

n=0

An,

where we use the convention that A0 contains the empty word. For w = (w1, . . . wn) ∈
A(N) we denote the length n of the word w by l(w).
Now we consider an equivalence relation ' on A(N) relating words of the same length,

∀w, v ∈ A(N) : w ' v ⇒ l(w) = l(v)

and preserving the relation if two words are continuation by the same word,

∀u, v, w ∈ A(N) : w ' v ⇒ wu ' vu.

We denote the equivalence class of a word w by [w] := {v|v ' w} and set

K := A(N)/' = {[w]|w ∈ A(N)}.

We refer to the elements of K as knots. We say that two knots [w] and [v] are connected
if and only if

l(w) = l(v) + 1 and ∃i ∈ A : vi ∈ [w]
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or
l(v) = l(w) + 1 and ∃i ∈ A : wi ∈ [v].

Note that by our assumption on ' this definition is independent of the representatives w
and v of the knots [w] and [v]. Furthermore let E be the set of all edges,

E := {([u], [v]) ∈ K2|[u], [v] are connected}.

Definition 2.1 The rooted simplicial infinite graph (K,E) induced by the relation ' is
called self similar if

∀p, u, v, w ∈ A(N) : v ' u ∧ p ' w ⇒ vp ' uw

and
∀p, u, v, w ∈ A(N) : v ' u ∧ vp ' uw ⇒ p ' w

In the following we always denote an infinite graph by K suppressing the set of edges E
in our notation. For each knot [v] ∈ K we consider the subgraph

K[v] = {[uw]|u ∈ [v] ∧ w ∈ A(N)} ⊆ K.

We may characterize self-similar graphs using their subgraphs:

Proposition 2.1 A rooted simplicial infinite graph K is self-similar if and only if K is
isomorphic to the subgraph K[v] via φ([w]) = [vw] for all [v] ∈ K.

Proof. First note that the definition of the map φ is independent of the representatives
w, v of the knots [w], [v] if and only if

v1 ' v2 ∧ w1 ' w2 ⇒ v1w1 ' v2w2.

This is the first condition for self-similarity. Then note that the inverse map φ−1([vw]) =
[w] is well defined if and only if

v1 ' v2 ∧ v1w1 ' v2w2 ⇒ w1 ' w2.

This is the second condition for self-similarity. Furthermore we get by self similarity

w2i ∈ [w1] ⇔ vw2i ∈ [vw1]

Thus the maps φ and φ−1 preserves the relation of connectedness between two knots. ¤

Let
Kn = {[w]|w ∈ A(N), l(w) = n}

be the knots at the n-the level of graph.

Lemma 2.1 For an infinite self-similar graph K we have

Card(Kn+m) ≤ Card(Kn)Card(Km)
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Proof. The map ϕ : Kn ×Km 7−→ Kn+m given by ϕ([w], [v]) = [wv] is by self-similarity
well defined and onto. Now our result is obvious. ¤

By this lemma the sequence log Card(Kn) is subadditive and we may define:

Definition 2.2 The exponential growth rate of an infinite self similar graph K is given
by

H(K) := lim
n 7−→∞

log Card(Kn)

n
= inf

n≥1

log Card(Kn)

n
We say that K has exact growth rate if there are constants C, c > 0 such that

cenH(K) ≤ Card(Kn) ≤ CenH(K)

with H(K) 6= 0.

The self-similarity of the graph is essential for the limit to exist. As well self-similarity
is essential to define the entropy of a random walk on the graph, see section 5. So all
examples of infinite graphs we will study below are self-similar.
At the end of this section we are now able to define a ζ-function associated with growth
of Kn:

Definition 2.3 For an infinite self-similar graph K

ζK(z) = exp(
∞∑

n=1

Card(Kn)

n
zn)

is called the ζ-function of the graph.

The ζ-function is analytic in the complex disc D = {z | |z| < e−H(K)} and has singularities
on the boundary. We will see in our examples that the function may have an meromorphic
continuation to the whole complex plan. The ζ-function encodes information about the
growth of an self similar graph into one nice analytic object.

3 Examples of self-similar graphs

3.1 Simple graphs

The simplest self similar graph is given by the relation u ' w ⇔ l(u) = l(w). It has one
knot at each level and we call it the trivial graph. Another simple self-similar graph is
given by the relation u ' w ⇔ u = w on A(N). It may be identified with A(N) itself. We
call this the full A-ary graph. Trivially we have Card(Kn) = Card(A)n and thus

H(K) = log Card(A) and ζK(z) = 1/(1− Card(A)z).
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Figure 1: The full binary graph

All other self-similar tress have an strictly smaller exponential growth rate:

Proposition 3.1 If K is a self-similar graph with alphabet A, H(K) = log Card(A)
holds if and only if K is the full A-ary graph.

Proof. The if part is obvious. If K is not the full A-ary graph then Card(Kn) <
Card(A)n for some n and by self-similarity of the graph

H(K) ≤ log Card(Kn)

n
< log Card(A).

¤
Now consider the self-similar graph given by the relation v ' w ⇔ l(v) = l(w) = n ∧∑n

i=1 vi =
∑n

i=1 wi on {0, 1}(N). In analogy with the Pascal triangle we call corresponding
self-similar graph K the Pascal graph. Obviously Card(Kn) = n+1 and hence H(K) = 0.

Figure 2: The Pascal graph

In the next subsection we introduce more exciting examples of self-similar graphs.

3.2 Pisot graphs

We describe here the infinite self-similar binary graphs we had in mind inventing the gen-
eral construction in the last section. These graphs have a strong relationship to algebraic
number theory.

Let A = {0, 1} and let β ∈ (0.5, 1) be the reciprocal of a Pisot number. A Pisot number
α ∈ (1, 2) is an algebraic integer with all its Galois conjugates inside the unit circle, see
[2]. Examples of β ∈ (0.5, 1) such that α = β−1 is a Pisot number are the solutions of the
equations

xn + xn−1 + . . . + x− 1 = 0 n ≥ 2.

Clearly, this solutions form a sequence βn 7−→ 0.5. The only example with minimal
polynomial of degree 2 is the golden ratio β2 = (

√
5 − 1)/2. Beside β3 there are three

other examples β′3, β
′′
3 , β′′′3 with minimal polynomial of degree 3 given by the solutions of

x3 + x2 − 1 = 0, x3 + x− 1 = 0, x3 − x2 + 2x− 1 = 0.
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We define an equivalence relation on An by

(w1, . . . , wn) ' (v1, . . . , vn) :⇔
n∑

k=1

wkβ
k =

n∑

k=1

vkβ
k.

This induces an appropriate relation on A(N) and an infinite graph Kβ. We call the graph
Kβ a Pisot graph. If β is the golden ratio the corresponding graph Kβ is called the
Fibonacci graph, see [14] .

Proposition 3.2 A Pisot graph Kβ is self-similar.

Proof. We have

n∑

k=1

wkβ
k =

n∑

k=1

vkβ
k ∧

m∑

k=1

wk+nβ
k =

m∑

k=1

vk+nβ
k ⇒

m+n∑

k=1

wkβ
k =

m+n∑

k=1

vkβ
k

given the first condition of self-similarity and

n∑

k=1

wkβ
k =

n∑

k=1

vkβ
k ∧

m+n∑

k=1

wkβ
k =

m+n∑

k=1

vkβ
k ⇒

m∑

k=1

wk+nβ
k =

m∑

k=1

vk+nβk

given the second one. ¤

We like to present some figures of Pisot graphs up to the knots of level four.

Figure 3: The Fibonacci graph Kβ2

6



Figure 4: The graph Kβ3

Figure 5: The graph Kβ′′3

We are able to determine the growth rate H(Kβ) of a Pisot graph using an algebraic
result.

Proposition 3.3 A Pisot graph has exact exponential growth rate with

H(Kβ) = − log β.

Proof. We know from the famous Garcia lemma [5] that if β−1 ∈ (1, 2) is a Pisot number,
then

n∑

k=1

wkβ
k 6=

n∑

k=1

vkβ
k ⇒ cβn ≤ |

n∑

k=1

wkβ
k −

n∑

k=1

vkβ
k| ≤ Cβn

holds for constants c, C > 0. Hence

C−1β − βn+1

1− β
β−n < Card(Kβ,n) < c−1 β

1− β
β−n

proving the exact growth rate of Kβ. Taking logarithm dividing by n and taking the limit
leads to the formula for H(Kβ). ¤
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An explicit formula for growths of the Fibonacci graph is easy to find. Just notice that
Card(Kβ2,n) − Card(Kβ2,n−1) is the Fibonacci sequence. By the formula of Binet we
hence have

Card(Kβ2 , n) =
(1 +

√
5)n+2 − (1−√5)n+2

2n+2
√

5
− 1.

From this we get the following expression for the ζ-function of the Fibonacci graph,

ζKβ2
(z) =

(1− z)(1− z 1−√5
2

)b

(1− z 1+
√

5
2

)a

with a = (6 + 2
√

5)/4
√

5 and b = (6 − 2
√

5)/4
√

5. To find formulas for the growth and
the ζ-function of other Pisot graphs is more involved. In special cases you find results on
the growth in [6].

4 Random Walks on self-similar graphs

We consider here random walks starting at the root, directed from level to level of the
infinite graphs constructed in last sections. We use an ergodic theoretic approach to
describe this random walks and their entropy. We first introduced some notations and
results from classical ergodic theory, see [15], [3] or [7] for this material.

Consider the sequence space Σ = AN. For sequences w = (wi) and v = (vi) in Σ we
define a distance d by

d(w, v) =
∞∑
i=1

|e(wi)− e(vi)|
Card(A)i

where e : A 7−→ {1, . . . , Card(A)} is an enumeration. (Σ, d) is a perfect, totally discon-
nected, compact metric space and hence homeomorphic to the cantor set. Given a word
w = (w1, . . . , wn) ∈ An we define the cylinder set of the word by

〈w〉 := {(vi) ∈ Σ|(v1, . . . , vn) = (w1, . . . wn)}.
Given a knot [w] ∈ K we define the cylinder set of the knot by

〈[w]〉 =
⋃
v'w

〈v〉 = {(vi) ∈ Σ|(v1, . . . , vn) ' (w1, . . . wn)}.

Both, the cylinder of a word and the cylinder of a knot, as a finite union of cylinder sets
of words, are open and closed in Σ. Moreover

Pn = {〈w〉|w ∈ An}
and

Πn = {〈[w]〉|[w] ∈ Kn}
form partitions of the sequence space Σ, where the partition Pn is finer than partition Πn.
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Now let M = M (Σ) be the space of all Borel probability measures on Σ. With the
weak∗ topology M becomes a compact, convex and metrizable space. A measure µ ∈ M
induces a directed random walk on the graph K. The directed random walk moves at
time n from level n − 1 to level n. Thus the probability to reach a knot [w] ∈ K after
l(w) steps is given by

µ([w]) := µ(〈[w]〉)
and the probability to pass a sequence of knots with increasing level [w1], . . . , [wk] ∈ K is

µ([w1], . . . , [wk]) = µ(〈[w1]〉 ∩ . . . ∩ 〈[wk]〉).
Accordingly the probability to move from [w1] ∈ K to [w2] ∈ K with l(w1) = l(w2) + 1,
is given by

µ([w2]|[w1]) =
µ(〈[w1]〉 ∩ 〈[w2]〉)

µ(〈[w1]〉
By this definitions a measure µ ∈ M completely describes a random walk on the class of
graphs we are interested in.

Definition 4.1 Let K be a rooted infinite self similar graph. We call a measure µ ∈ M
together with the definition µ([w]) := µ(〈[w]〉) for [w] ∈ K a directed random walk on K
starting from the root.

Now especially consider a Bernoulli measure b on Σ which is characterized by the product
property,

∀v, w ∈ A(N) b(〈vw〉) = b(〈v〉)b(〈w〉).
By the self-similarity of a graph we get:

Proposition 4.1 If b ∈ M is a Bernoulli measure we have

∀w, v ∈ K b([v])b([w]) ≤ b([vw])

for the induced random walk on a self-similar graph K.

Proof. We have

b([v])b([w]) = b(
⋃
s'v

〈s〉)b(
⋃
t'w

〈t〉) =
∑
s'v

b(〈s〉)
∑
t'w

b(〈t〉)

≤
∑

st'vw

b(〈s〉)b(〈t〉) =
∑

st'vw

b(〈st〉) = b(
⋃

st'vw

〈st〉) = b([vw]).

¤

At the end of this section we introduce limit measures of a random walk on a self similar
graph by projecting the measure on K onto the interval [0, 1]. To this end first consider
the lexicographical order ≺ on A(N). This introduces a linear order on K by

[v] ≺ [w] :⇔ min{v̄|v̄ ∈ [v]} ≺ min{w̄|w̄ ∈ [w]}.
It is easy to see that this order is self-similar in the following sense,

∀u ∈ K : [v] ≺ [w] ⇔: [uv] ≺ [uw].
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Now let ]n by the enumeration of Kn with respect to ≺. With the help of the enumeration
we define πn : Kn 7−→ [0, 1] by

πn([v]) :=
]n([v])

Card(Kn)
.

µ ∈ M induces a sequence of discrete equidistant probability measures µn on the interval
[0, 1] by

µn := πn(µ) = µ ◦ π−1
n .

Now we may define:

Definition 4.2 Let K be a self similar graph. For µ ∈ M we call a weak? accumulation
point µK of the sequence of equidistant probability measures µn := µ ◦π−1

n on [0, 1] a limit
measure of the induced random walk on K.

5 The entropy of a random walk on a self-similar

graph

We define the shift map σ : Σ 7−→ Σ by σ((wi)) = (wi+1) and consider the set of shift
invariant measures M = M(Σ) := {µ ∈ M |σ(µ) = µ}. This is a compact, convex and
non-empty subspace of M containing the Bernoulli measures. Given a partition P of Σ
and µ ∈ M the entropy of the partition is defined as

H(µ,P) = −
∑
P∈P

µ(P ) log µ(P ).

Given a σ-invariant measure the metric entropy of the measure with respect to the map
σ is given by

h(µ) = lim
n 7−→∞

1

n
H(µ,Pn)

where Pn is the partition into cylinder sets of words introduced in last section, see again
[3], [15] or [7].
We want to define here the entropy of a measure µ ∈ M on an infinite self-similar graph
K. In order to do so we need a few notation and one lemma. Let P1,P2 be two partitions.
We define their join as

P1 ∨P2 := {P1 ∩ P2|P1 ∈ P1, P2 ∈ P2}.

We write P1 ¹ P2 if P2 is finer then P1. With this notations we have:

Lemma 5.1

Πn+m ¹ Πn ∨ σ−n(Πm)

and
H(µ, Πn+m) ≤ H(µ, Πn) + H(µ, Πm)

where Πn is the partition given by the knots K.
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Proof. We show that the first inequality follows from the self-similarity of the graph.
Let P ∈ Πn ∨ σ−n(Πm). Then there exist [v] ∈ Kn and [w] ∈ Km such that

P = 〈[v]〉 ∩ σ−n(〈[w]〉)

= {(sk) ∈ Σ|(s1, . . . , sn) ' (v1, . . . , vn) ∧ (sn+1, . . . , sn+m) ' (w1, . . . , wn)}
⊆ {(sk) ∈ Σ|(s1, . . . , sn+m) ' (v1, . . . , vn, w1, . . . , wn)}

= 〈[vw]〉 ∈ Πn+m.

From this by well know properties of partition entropy H, see [15], and the invariance of
µ we get,

H(µ, Πn+m) ≤ H(µ, Πn ∨ σ−n(Πm)) ≤ H(µ, Πn) + H(µ, σ−n(Πm))

= H(µ, Πn) + H(µ, Πm).

¤

From this lemma we know that H(µ, Πn) is a subadditive sequence and we may define:

Definition 5.1 The entropy of a random walk on an infinite self-similar graph K induced
by an invariant measure µ ∈ M is given by

h(µ,K) := lim
n 7−→∞

H(µ, Πn)

n
= inf

n≥1

H(µ, Πn)

n
.

In the next section we study basic properties of this entropy.

6 Basic properties of the entropy of a random walk

on a self-similar graph

There are two obvious upper bounds on the entropy h(µ,K) , one given by the measure
and one given by the graph. The first one is:

Proposition 6.1 For an invariant measure µ ∈ M on an infinite self-similar graph K
we have

h(µ,K) ≤ h(µ).

Proof. We have Πn ¹ Pn implying H(µ, Πn) ≤ H(µ,Pn). Dividing by n and taking the
limit leads to the inequality. ¤

The second one is:

Proposition 6.2 For an invariant measure µ ∈ M on an infinite self-similar graph K
we have

h(µ,K) ≤ H(K).
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Proof. We have H(µ, Πn) ≤ log Card(Πn) = log Card(Kn). Dividing by n and taking
the limit leads to the inequality. ¤

Of course the interesting question in the entropy theory for self-similar graphs is under
what assumption on the graph and on the measure the inequality in the last proposition
is an equality. We will discuss the question below. We remark that proposition 6.2 is an
analogue of the bound h(µ) ≤ log Card(A) on the classical metric entropy of a measure
µ ∈ M. Equality h(µ) = log Card(A) holds if and only if µ is the equal weighted Bernoulli
measure b, see [3], [7] or [15]. By this fact we conclude:

Proposition 6.3 h(µ,K) = h(µ) holds for all µ ∈ M if and only if K is the full A-nary
graph.

Proof. The if part is obvious since the full A-ary graph is described by the space of
infinite sequences from A. Now assume h(b,K) = h(b) for the equal weighted Bernoulli
measure b ∈ M. This implies h(b, K) = log Card(A), thus by Proposition 6.2 H(K) =
log Card(A) and Proposition 3.1 implies that K is the full A-ary graph. ¤

Now we study the entropy map hK : M 7−→ [0, H(K)] given by hK(µ) := h(µ,K).

Proposition 6.4 The entropy map hK associated with a self-similar graph K is affine
and upper-semicontinous on M.

Proof. Let µ1, µ2 ∈ M and set µ = pµ1 + (1− p)µ2 with p ∈ (0, 1). For all partitions Πk

of Σ the inequality

0 ≤ −pHµ1(Πk)− (1− p)Hµ2(Πk) + Hµ(Πk) ≤ log 2

holds, see [3]. Thus by the definition of our entropy we have

h(µ,K) = ph(µ1,K) + (1− p)h(µ2,K)

meaning affinity of the entropy map.

Now we prove that the entropy map is upper-semi-continuous. Let µ, µn ∈ M with
µn → µ and fix ε > 0. From the definition of the entropy on K we know that there exists
a k ∈ N such that,

h(µ,K) ≥ H(µ, Πk)

k
− ε

2
.

For the elements P of the partition Πk we have

lim
n−→∞

µn(P ) = µ(P )

since these sets are open and closed. Hence there exists an n0 ∈ N such that for all n ≥ n0

1

k
|H(µ, Πk)−H(µn, Πk)| ≤ ε

2
.

Using both inequalities we get,

h(µ,K) ≥ 1

k
H(µn, Πk)− ε ≥ h(µn,K)− ε.
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This proves upper-semi-continuity of hK. ¤

It is well known that the usual metric entropy h(µ) has the same property on M, see
[3], [7] or [15].

7 Local entropy of random walks on self-similar graphs

We now introduce the local entropy of random walks on a self similar graph.

Definition 7.1 For an infinite self-similar graph K and a measure µ ∈ M we call

h(µ,K)(w) := lim sup
n7−→∞

− log µ([w1, . . . , wn])

n

the local entropy of µ on K in the sequence w = (w1, w2, . . .) ∈ Σ.

We have to use the limit superior in this definition since the limit does not have to exist
in general. Now we prove a version of the local entropy theorem of Shannon for Bernoulli
measures on self-similar graphs.

Theorem 7.1 If K is an infinite self-similar graph and b ∈ M is a Bernoulli measure,
we have

h(b,K)(w) = lim
n 7−→∞

− log b([w1, . . . , wn])

n
= h(b,K)

for b-almost all w ∈ Σ.

Proof. For w ∈ Σ let
fn(w) = − log b([(w1, . . . , wn)]).

By proposition 4.1 we have

fn+k(w) ≤ fn(w) + fk(σ
n(w))

By the Subadditive Ergodic theorem of Kingman, see [7], the limit

f̄(w) = lim
n7−→∞

1

n
fn(w)

exists for b-almost all w ∈ Σ and

1

n

∫
fndb → f̄ .

On the other hand by an obvious calculation
∫

fndb = −
∑

[w]∈Kn

∫
log b([w])db =

∑
P∈Πn

b(P ) log b(P ) = H(b, Πn)

leading to the desired result. ¤

Proposition 4.1 and therefore the product property of Bernoulli measures is essential
for our proof of Shannons theorem in the context of random walks on self-similar graphs.
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8 A random walk with full entropy

In this section we are interested in an analogon to the variational principle of metric
entropy in classical ergodic theory for random walks on infinite self-similar graphs, see
[15], [3] or [7]. Let us first give a definition:

Definition 8.1 We say that a random walk on an infinite self-similar graphs K induced
by a measure µ ∈ M has full entropy, if

h(µ,K) = H(K).

We prove:

Theorem 8.1 Every infinite self-similar graph has a random walk with full entropy.
Moreover the measure inducing this random walk may be chosen ergodic.

Proof. We first construct a shift invariant measure µ with h(µ,K) = H(K) and after-
wards prove the existence of an ergodic one.

Let ](n) denote the number of elements of the partition Πn. Now choose measures µn ∈ M
such that

µn(P ) = 1/](n) ∀P ∈ Πn

and let µ be a weak∗ accumulation point of the sequence

µ̄n =
1

n

n−1∑
i=0

µn ◦ σ−i.

By this construction we immediately have that µ is invariant under σ.

Note that P1 ¹ P2 implies σ−k(P1) ¹ σ−k(P2) and σ−k(P1 ∨ P2) ¹ σ−k(P1) ∨ σ−k(P2)
where ∨ denotes the join as usual. From Lemma 5.1 we know Πn+m ¹ Πn ∨ σ−n(Πm).
Combining this facts we get by induction

Πaq ¹
a−1∨
i=0

σ−iq(Πq).

Let bxc be the integer part of x. Given n and q and k with 0 < q < n and 0 ≤ k < q we
set a(k) = b(n− k)/qc and write n− k in the form a(k)q + r with 0 ≤ r < q. With this
stipulation we get

Πn ¹ σ−k(Πn−k) ∨ Πk ¹ σ−k(Πa(k)q) ∨ σ−(a(k)q+k)(Πr) ∨ Πk

¹
a(k)−1∨

i=0

σ−iq+r(Πq) ∨ σ−(a(k)q+k)(Πr) ∨ Πk

and hence

H(µn, Πn) ≤
a(k)−1∑

i=0

H(µn, σ
−iq+k(Πq)) + H(µn, σ

−(a(k)q+k)(Πr)) + H(µn, Πk)
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≤
a(k)−1∑

i=0

H(µn, σ−iq+k(Πq)) + 2q log 2.

The last inequality follows from the fact, that the partitions Σq and Σr have less than 2q

elements. Now summing over k gives

qH(µn, Πn) ≤
q−1∑

k=0

a(k)−1∑
i=0

H(µn, σ
−iq+k(Πq)) + 2q2 log 2 ≤ nH(µ̄n, Πq) + 2q2 log 2.

This implies
H(µn, Πn)

n
≤ H(µ̄n, Πq)

q
+

2q

n
log 2.

By Definition of the measures µn we have Hµn(Πn) = log ](n), thus

log ](n)

n
≤ H(µ̄n, Πq)

q
+

2q

n
log 2.

By the Definition of µ as an accumulation point of µ̄n and Definition 2.2 we get

H(K) ≤ H(µ, Πq)/q.

and by Definition 5.1 and proposition 6.1 we finish with h(µ,K) = H(K).

We have shown up to this point that the set

M̄ := {µ ∈ M |h(µ,K) = H(K)}
of invariant Borel measures on Σ is not empty. We know from Proposition 6.4 that hK

is upper semi-continuous and affine, which implies that M̄ is compact and convex with
respect to the weak∗ topology. By Krein-Milman theorem, see [3] there exists an extremal
point µ of M̄ . We show that µ is extremal in the space M of all invariant Borel probability
measure and hence σ ergodic.
If this is not the case we have µ = pµ1 +(1−p)µ2 for two distinct σ invariant measures µ1

and µ2 and p ∈ (0, 1). Since µ is extremal in M̄ we have that µ1 or µ2 is not in M̄ . Hence
h(µ1,K) < H(K) or h(µ2,K) < H(K). This implies h(µ,K) < H(K) a contradiction to
µ ∈ M̄ . ¤

We remark that in contrast to ergodic theory on the space of infinite sequences the
measure of full entropy is in general not Bernoulli. We think that the measures given
by our theorem may be an interesting object for further studies. Especially we ask the
question if the measure that induces a directed random walk of full entropy on a infinite
self-similar graph is unique.

9 Limite measures of random walks on self-similar

graphs

We begin here to study limit measures of random walks on self-similar graphs, see Defin-
tion 4.2. We are interested in the relation between the limit measures and the entropy of
the random walk on a self-similar graph.
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Theorem 9.1 Let K be a self similar graph with exact growth rate. If a limit measure
of a random walk on K is not absolutely continuous with respect to the Lebesgue measure
then this random walk does not have full entropy.

Proof. Let µ ∈ M and let µK be a corresponding limit measure of a random walk on
a self similar graph K. If µK is not absolutely continues with respect to the Lebesgue
measure `, there is a constant D > 0 such that for all ε > 0 there is a finite union U ⊆ [0, 1]
of open disjoint intervals with

`(U) < ε and µK(U) > D.

Let
Ū = {πn([u])|πn([u]) ∈ U and [u] ∈ Kn}

For all open intervals and hence for the finite union U of such intervals we have

Card(Ū)/Card(Kn) ≤ `(U)

which implies
Card(Ū) ≤ εCard(Kn)

With the help of the sequence of measures µn = πn(µ) we may estimate

H(µ, Πn) = −
∑

[u]∈Kn

µ([u]) log µ([u]) = −
∑

[u]∈Kn

µn(πn([u])) log µn(πn([u]))

= −
∑

πn([u])∈Ū

µn(πn([u])) log µn(πn([u]))−
∑

πn([u]) 6∈Ū

µn(πn([u])) log µn(πn([u]))

≤ µn(Ū) log
Card(Ū)

µn(Ū)
+ (1− µn(Ū)) log

Card(Kn)− Card(Ū)

1− µn(Ū)

≤ µn(Ū) log Card(Ū) + (1− µn)(Ū) log Card(Kn) + log 2

≤ µn(Ū) log(εCard(Kn)) + (1− µn)(Ū) log Card(Kn) + log 2

= log Card(Kn) + µn(Ū) log(ε) + log 2

Since µK is an weak? accumulation point of the sequence µn there is a subsequence
nk 7−→ ∞ such that for all k > k0(ε) we have µnk

(Ū) > D. From our estimate from above
we get

H(µ, Πnk
) ≤ log Card(Knk

) + D log(ε) + log 2.

Using the exact exponential growth rate of K this implies

H(µ, Πnk
) ≤ nkH(K) + log(C) + D log(ε) + log 2.

If ε > 0 is small enough and k > k0(ε) we thus get

H(µ, Πnk
)

nk

< H(K)

and hence h(µ,K) < H(K) since H(µ, Πnk
) is a subadditive sequence. ¤

Theorem 8.1 together with Theorem 9.1 have the following striking corollary:
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Corollary 9.1 Every self-similar graph with exact growth rate has a random walk with
absolutely continuous limit measures.

We close our work with a question. What could be said about the density of an absolutely
continuous limit measures of random walk on a self-similar graph? Is the density in L2,
could we give an explicit description of the density, lets say for the Fibonacci graph?
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