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Li-Yorke pairs

Let (X ,d) be a metric space and T : X 7→ X be a
continues transformation.
(x , y) ∈ X 2 is a Li-York pair if

lim sup
n 7−→∞

d(T nx ,T ny) > 0 and lim inf
n 7−→∞

d(T nx ,T ny) = 0

Let L(X ,T ) ⊆ X 2 be the set of Li-York pairs
A system is Li-Yorke chaotic if L(X ,T ) is uncountable.
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Some results

Li-Yorke (1975): A continuous map f on the unit interval
having three periodic point is Li-Yorke chaotic.
Kuchta-Smital (1989): A continuous map f on the unit
interval having one Li-Yorke pair is Li-Yorke chaotic.
Blanchard, Kolyada, Glasner and Maass (2002): Positive
topological entropy implies Li-Yorke chaos.
Huang-Ye (2002): Devaney chaos, a dense orbit and
dense periodic orbits, implies Li-Yorke chaos.
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Hyperbolic systems

Let X be a compact manifold and T be smooth with an
hyperbolic invariant set Λ.
(Λ,T ) is Li-Yorke chaotic since a positive Lyapunov
exponent implies positive entropy.
Are there ”many” Li-Yorke pairs? This is a question in the
dimension theory of dynamical systems.
We say that Li-Yorke pairs have full dimension if

dimH L(Λ,T ) = dimH Λ× Λ

where dimH denotes the Hausdorff dimension.
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Symbolic dynamics

Let (Σ, σ) be the full shift on n symbols. This system is
Li-York chaotic.
For s ∈ Σ and a sequence nk of natural numbers let

Σnk (s) = {s1s̄2[n1 free]sv sv+1s̄v+2[n2 free] . . . } ⊆ Σ

If s ∈ Σ and t ∈ Σnk (s) the pair (s, t) is Li-York pair hence

Lnk (Σ, σ) = {(s, t)|s ∈ Σ, t ∈ Σnk (s)} ⊆ L(Σ, σ)
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Iterated function systems

Let (T1, ...,Tn) be contractions on X . Than there is unique
compact invariant attractor Λ with

Λ =
n⋃

i=1

TiΛ [Hutchinson 1981]

The coding map π : Σ 7→ Λ is given by

π((sk )) = lim
n 7−→∞

Tsn ◦ · · · ◦ Ts2 ◦ Ts1(X )
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Main theorem

Let (T1, ...,Tn) be an IFS with contracting similitudes and
self-similar attractor Λ fulfilling the open set condition

Ti(O) ⊆ O Ti(O) ∩ Tj(O) = ∅.

Let nk be a sequence of natural numbers with

lim
n 7−→∞

∑N
k=1 nk

N2 =∞

Than for all s ∈ Σ we have

dimH π(Σnk (s)) = dimH Λ and dimH π(Lnk (Σ, σ)) = dimH Λ2
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Consequences

If (Λ,T ) is homöomorphic conjugated to the shift (Σ, σ)
and Λ is a self-similar invariant set than Li-Yorke pairs have
full dimension.
If (Λ,T ) is homöomorphic conjugated to a two-sided full
shift and the coding map is a product with two self-similar
images, Λ = Λ1 × Λ2, than Li-Yorke pairs have full
dimension.
For classical toy models of chaotic dynamics Li-Yorke pairs
have full dimension, i.e. the repeller of the tend map, linear
horseshoes and solenoids, the attractor of (generalized)
Baker’s transformations.
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Problems

Generalize the result from full shifts to subshifts of finite
type.
Generalize the result from linear to conform systems using
thermodynamic formalism.
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Thanks for Your Attention!
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